ON A CERTAIN PROPERTY OF THE CHARACTERISTIC NUMBERS OF THE SOLUTIONS OF DIFFERENTIAL EQUATIONS

(OB ODNOM SVOISTVE KHARAKTERISTICBNYKH CHISEL RESHENII DIFFERENTSIAL'NYKH URAVNENII)

PMM Vol.22, No.5, 1958, pp. 707-710

G.K. POZHARITSKII

(Moscom)
(Received 26 February 1957)

This paper will study a property of the characteristic numbers of the vanishing solutions of the equations of disturbed motion. A theorem will be established on a very close link between the characteristic numbers of the above solutions and the eigenvalues of the system of first-order approximations. It is difficult to establish a condition for the stability of such characteristic numbers, which has been used earlier for the proof of an analogous theorem [2].

Let there be given the system of equations of disturbed motion

$$
\begin{equation*}
\frac{d x_{1}}{d t}=x_{1}, \ldots, \quad \frac{d x_{n}}{d t}=X_{n} \tag{1}
\end{equation*}
$$

where X_{1}, \ldots, X_{n} are the holomorphic functions of x_{1}, \ldots, x_{n},

$$
x_{s}=p_{s 1} x_{1}+\ldots+p_{\mathrm{s} n} x_{n}+\sum p_{s}{ }^{\left(m_{1}, \ldots m_{n}\right)} x_{1}^{m_{1}} \ldots x_{n}^{m_{n}}
$$

with the sum extended over all non-negative integers m_{1}, \ldots, m_{n}, if $m_{1}+\ldots+m_{n}>1$.

The coefficients $p_{s i}, p_{s}\left(n_{1} \ldots \ldots n_{n}\right)$ are real, continuous, bounded functions of time, and there exist positive constants M and A such that for all $t \geqslant t_{0}$

$$
\begin{equation*}
\left|P_{s}^{\left(m_{1}, \ldots m_{n}\right)}\right|<\frac{M}{A^{m_{1} \Gamma \cdots+m_{n}}} \tag{2}
\end{equation*}
$$

Consider the system of first approximations

$$
\begin{equation*}
\frac{d x_{s}}{d t}=p_{81} x_{1}+\ldots+p_{8 n} x_{n} \quad(s=1, \ldots, n) \tag{3}
\end{equation*}
$$

and 1 ts characteristic numbers $\lambda_{1}, \ldots, \lambda_{n}$.

In reference [2], the following theorem has been established:
Theorem: If the system (1) has a vanishing solution and the system (3) stable eigenvalues, the characteristic number of this solution is exactly equal to one of the nonnegative eigenvalues of the system (3).

This theorem can be proved without condition (2). However, if this condition is added and if, in addition, it is assumed that the system (3) is regular and that among its eigenvalues we have $\lambda_{1} \geqslant \lambda_{2} \ldots \geqslant \lambda_{p}>0$, a stronger result may be established, even if we relax the condition of the stability of the eigenvalues, which is not readily verified.

Theorem: a) If the system (3) is regular and $\lambda_{1} \geqslant \lambda_{2} \ldots \geqslant \lambda_{k}>0$, system (1) must have vanishing solutions $x_{1}{ }^{j}, \ldots, x_{n}{ }^{j}$ with characteristic numbers $\lambda_{1}, \ldots, \lambda_{k}$.
b) For a solution with the initial conditions $x_{1}{ }^{0}, \ldots, x_{n}{ }^{0}$ to have the characteristic number $\lambda_{1}>\lambda_{p}$, it is sufficient to fix $x_{1}{ }_{0}, \ldots, x_{p}{ }^{0}$ arbitrarily, except for ensuring that their moduli are sufficiently small, and to find $x_{p+1}, \ldots, x_{n}{ }^{0}$ from the relations

$$
x_{p+1}=\varphi_{p+1}\left(x_{1}{ }^{\circ}, \ldots, x_{p}{ }^{\circ}\right), \quad x_{n}=\varphi_{n}\left(x_{1}{ }^{\circ}, \ldots, x_{p}{ }^{\circ}\right)
$$

where $\phi_{p+1}, \ldots, \phi_{n}$ are holomorphic functions of $x_{1}{ }^{0}, \ldots, x_{p}{ }^{0}$ which vanish when the latter vanish.

Before presenting the proof, two theorems of Liapunov's first method will be stated.

Let $x_{i j}, \ldots, x_{n j}$ be a normal system of independent solutions of the system of equations (3).

Liapunov's theorem: I. If $\lambda_{1}, \ldots, \lambda_{k}$ are positive eigenvalues of the regular system (3), system (1) has solutions which may be presented in the form

$$
\begin{equation*}
x_{s}=\sum_{j=1}^{k} \alpha_{j} x_{j s}+\sum_{m_{1}+\ldots+m_{h}>2} L_{s}{ }^{\left(m_{1}, \ldots, m_{h}\right)} \alpha_{1}^{m_{1}} \ldots \alpha_{k}^{m_{k}} \exp \left(-\sum_{i=1}^{k} m_{i} \lambda_{i} t\right) \tag{4}
\end{equation*}
$$

where $a_{1}, \ldots, \alpha_{k}$ are arbitrary constants whose moduli do not exceed some upper nonzero-bound and the eigenvalues of the functions $L_{s}\left(m_{1}, \ldots . m_{n}\right)$ are not less than zero.
II. If ϵ is some positive constant and one puts

$$
\alpha_{s} e^{-\left(\gamma_{s}-s\right) t}=q_{s} \quad(s=1, \ldots k)
$$

and replaces the a_{s} in the series (4) by the corresponding expressions, one obtains the new series

$$
x_{s}=\sum Q_{s}^{\left(m_{1}, \ldots, m_{k)}\right.} q_{1}^{m_{1}} \ldots q_{k}^{m_{k}} \quad(s=1, \ldots, n)
$$

expanded in ascending powers of q_{s} which will have the property that for every ϵ, however small, there will be a positive constant $Q^{\left(m_{1}, \ldots, m_{k}\right)}$ for which, for all nonnegative values of t, one has the inequalities

The series

$$
\begin{gathered}
\left|Q_{s}^{\left(m_{1}, \ldots, m_{k}\right)}\right|<Q^{\left(m_{1}, \ldots, m_{k}\right)} \\
\sum Q^{\left(m_{1}, \ldots, m_{k}\right)} q_{1}^{m_{1}}, \ldots, q_{k}^{m_{k}}
\end{gathered}
$$

Will converge absolutely, as long as the quantities q_{s} do not exceed some nonzero-bound q. It will be noted that a majorant for the functions

$$
Q_{s}{ }^{\left(m_{1}, \ldots, m_{k}\right)}=L_{s}{ }^{\left(m_{1}, \ldots, m_{k}\right)} e^{-\left(m_{1}+\ldots+m_{k}\right) \varepsilon i}
$$

may be constructed for any $\epsilon>0$, however small.
Proceeding now to the proof of the theorems, consider the solution

$$
\begin{aligned}
x_{s}^{p}= & \sum_{j=1}^{p} \alpha_{j} x_{j s}+\sum_{1<m_{1}+\ldots+m_{p}<l} L^{\left(m_{1} \ldots m_{p}\right)} \alpha_{1}^{m_{1}} \ldots \alpha_{p}^{m_{p}} \exp \left(-\sum_{i=1}^{p} m_{i} \lambda_{i} l\right)+ \\
& +\sum_{\infty>m_{1}+\ldots+m_{p}>l} L_{s}^{\left(m_{1}, \ldots, m_{p}\right)} \alpha_{1}^{m_{1}} \ldots \alpha_{p}^{m_{p}}\left(\exp -\sum_{i=1}^{p} m_{i} \lambda_{i} t\right)
\end{aligned}
$$

in which $a_{p+1}, \ldots . a_{k}$ have been put equal to zero, and the second sums on the right-hand sides contain all terms of order smaller than l in relation to the constants $\alpha_{1}, \ldots . a_{p}$. For this purpose, l is some positive integer, greater than 4 , which may be fixed arbitrarily.

On the basis of the fact that

$$
X\left(L_{s}{ }^{\left(m_{1}, \ldots, m^{p}\right.}\right) \geqslant 0
$$

and of a theorem involving the sums and products of eigenvalues, it is readily verified that for any a_{1}, \ldots, a_{p}, not all simultaneously zero,

$$
\begin{gathered}
X\left\{\sum_{1<m_{1}+\ldots+m_{p}<l} L_{s}{ }^{\left(m_{1}, \ldots, m_{p}\right)} \exp \left(-\sum_{i=1}^{r} m_{i} \lambda_{i} t\right)\right\} \equiv 2 \lambda_{p} \\
X\left\{\sum_{j=1}^{n} \alpha_{j} x_{j s}\right\}=\lambda_{i} \equiv \lambda_{p}
\end{gathered}
$$

where λ_{s} is one of the numbers $\lambda_{1}, \ldots, \lambda_{p}$.
The symbol $X\left\{f_{s}\right\}$ denotes the eigenvalue of the function f_{s} of the

system.

Consideration will now be given to the eigenvalue of the last sum and it will be shown that it is greater than λ_{p}. For this purpose it will be sufficient to find a small $\delta>0$ such that the functions

$$
\begin{gather*}
e^{\left(\lambda_{p}+\delta\right) t} \sum_{\cos m_{1}+\ldots+m_{p}>1} L_{s}^{\left(m_{1}, \ldots m_{p}\right)} a_{1}^{m_{i}} \ldots \alpha_{p}^{m_{p}} \exp \left[-\sum_{i=1}^{n} m_{i} \lambda_{i} t\right] \\
(s=1,2, \ldots, n) \tag{5}
\end{gather*}
$$

are bounded.
They may be written in the form

$$
\sum_{\alpha>m_{1}+\ldots+m_{p}>l} L_{s} s^{\left(m_{2}, \ldots, m_{p}\right)} \alpha_{1}^{m_{i}} \ldots \alpha_{p}^{m_{p}} \exp \left(-\sum_{i=1}^{p} \lambda_{i} m_{i}-\lambda_{p}-\delta\right) t
$$

and subjected to the transformation:

$$
q_{1}=a_{1} \exp \left[-\left(\lambda_{1}-\frac{1}{3} \lambda_{p}\right) t\right], \quad q_{p}=a_{p} \exp \left[-\left(\lambda_{p}-\frac{1}{3} \lambda_{p}\right) t\right]
$$

Then the series subsequently obtained will have in the capacity of $Q_{s}\left(m_{1}, \cdots, m_{p}\right)$ the quantities

$$
L_{s}{ }^{\left(m_{1}, \ldots, m_{p}\right)} \exp -\sum\left(m_{i}-\frac{\lambda_{p}}{3}-\lambda_{p}-\delta_{i}^{i}\right.
$$

Putting $\delta=1 / 3 \lambda_{p}$, we then find
$\left|L_{8}{ }^{\left(m_{1}, \ldots m_{p}\right)} \exp -\sum\left(m_{i}-4\right)^{\lambda_{p}} i\right|<\mid L_{3}{ }^{\left(m_{\mathbf{s}}, \ldots . m_{p}\right)} \exp \cdots\left(m_{1}+\ldots+m_{p}\right) \varepsilon t$
where $\epsilon>0$ must be chosen in the following manner.
Since

$$
-\sum\left(m_{i}-4\right) \frac{1}{3} \lambda_{n}-(l-4) \frac{1}{3} \lambda_{p}
$$

we obtain, by fixing ϵ to fulfil the inequality

$$
(l-4)^{1 / 3} x_{1}>l \varepsilon, \quad \text { or } \quad 0<\varepsilon<\left(1-\frac{4}{1}\right) 1 / 3 \lambda_{p}
$$

that for any $m_{1}+\ldots+m_{p}>l$ the inequality

$$
-\sum\left(m_{i}-4_{i}\right) \underset{3}{\lambda_{\gamma}}<-\left(m_{1}+\ldots+m_{p}\right) \varepsilon
$$

will be satisfied together with (5).
Since the series obtained from the substitutions

$$
q_{s}=x_{s} \exp -\left(\lambda_{s}-\varepsilon\right) t \quad(s=1, \ldots, p)
$$

will have as majorants the absolutely convergent series

$$
\sum_{l \leqslant m_{1} \ldots \ldots+m_{p} \leqslant \infty} Q^{\left(m_{1}, \ldots, m_{p}\right)} q_{1}^{m_{1}} \ldots q_{p}^{m_{p}}
$$

the series studied (5), on the strength of the inequalities (6), will likewise have this property. It is clear from the form of the substitution used to obtain them, that for any small $\left|a_{1}\right|, \ldots,\left|a_{p}\right|$ all the series (5) must be vanishing functions of the time, and hence they must be bounded.

Now putting $a_{1}=\ldots=a_{p}=0$ and $a_{p} \neq 0$, we obtain

$$
\begin{aligned}
\left(x_{s}^{j}\right)^{0}= & \alpha_{p} x_{\eta, s}+\sum_{1<m_{p}<l}^{\vdots} L_{s}{ }^{\left(m_{p}\right)} \alpha_{p}{ }^{m} p \exp \left(-m_{p} \lambda_{p} t\right)+ \\
& +\sum_{l \leqslant n_{p}<\infty}^{\sum} L_{s}{ }^{\left(m_{p}\right)} \lambda_{p}{ }^{m p} \exp -\left(n_{p} \lambda_{p} t\right)
\end{aligned}
$$

Since it has been established that

$$
\begin{aligned}
& \left.X \sum_{1<m_{p}<l} J_{s}{ }^{\left(m_{p}\right)} \alpha_{s}^{n^{\prime} p \exp \left(-m_{p} \lambda_{p} t\right)}\right\} \Rightarrow 2 \lambda_{p} \\
& X\left\{\sum_{l \leqslant m_{p} \leqslant \infty}^{\sum_{s}} I_{s}^{\left(m_{p}\right)} \alpha_{s}^{m} \operatorname{m}_{x} \exp \left(-m_{p} \lambda_{p} t\right)\right\}_{1}>\lambda_{p}
\end{aligned}
$$

by the condition $X\left\{x_{p s}\right\}=\lambda_{p}$, then, on the basis of the theorem for the sum of eigenvalues, we may establish that

$$
{ }^{d} \vee=\left\{\left\{_{0}\left({ }_{d}{ }^{8} x\right)\right\} X\right.
$$

which completes the proof of the first part of the theorem.
For the proof of its second part let $t=t_{0}$, when

$$
\begin{equation*}
x_{s}^{0} p=\alpha_{1} x_{1 s}^{0}+\ldots+\alpha_{p} x_{p s}{ }^{0}+\psi_{\mathrm{s}}\left(\alpha_{1}, \ldots, \alpha_{\gamma}\right) \quad(s=1, \ldots n) \tag{7}
\end{equation*}
$$

where $\psi\left(\alpha_{1}, \ldots, a_{p}\right)$ are holomorphic functions of a_{1}, \ldots, a_{p} which begin with terms not smaller than second order in a_{1}, ..., a_{p}. Among the minors of the matrix ($x_{j} s^{0}$) there will certainly be one different from zero, since otherwise the solutions $x_{j s}$ would not be linearly independent. Let this minor correspond to the first p rows of the matrix. Then the equations

$$
\begin{align*}
& x_{1}{ }^{\circ}=\alpha_{1} x_{11}^{\circ}+\ldots \alpha_{p} x_{1 p}^{\circ}+\psi_{1}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \\
& x_{p}{ }^{\circ} p=\alpha_{1 p} x_{1 p}^{\circ}+\ldots \alpha_{p} x_{\gamma p}{ }^{\circ}+\psi_{p}\left(\alpha_{1}, \ldots \alpha_{p}\right) \tag{8}
\end{align*}
$$

can be solved for a_{1}, \ldots, a_{p}, and the functions

$$
\begin{equation*}
\alpha_{1}=X_{1}\left(x_{1}{ }^{{ }^{p}}, \ldots, x_{p}{ }^{\circ}\right), \quad \alpha_{p}=X_{p}\left(x_{1}{ }^{\circ}, \ldots x_{p}{ }^{\circ}\right) \tag{9}
\end{equation*}
$$

Will be holomorphic functions of $x_{1}{ }^{\rho p}$. $x_{p}{ }^{0 p}$, if the moduli of the latter are sufficiently small, and certainly will not all vanish unless all $x_{1}{ }^{\circ p}, \ldots, x_{p}{ }^{0 p}$ are zero.

For a given system of values of $x_{1}{ }^{0 p}, \ldots, x_{p}{ }^{0 p}$ let the a_{1}, \ldots, a_{p}, not all equal to zero, be found from the equations (9). Then, as has been shown above, the solution

$$
x_{s}^{p}=\sum_{j=1}^{p} \alpha_{j} x_{j s}+\sum_{1<m_{1}+\ldots+m_{p} \leqslant \infty} L_{s}^{\left(1 n_{1} \ldots m_{p}\right) m_{1}} \alpha_{1} \ldots \alpha_{p}{ }^{m} p^{\operatorname{cxp}}\left(--\sum_{i=1}^{p} m_{i} \lambda_{i} i\right)
$$

will have eigenvalues which are not smaller than λ_{p}.
The remaining $x_{p+1}^{0}, \cdots, x_{n}^{0}$ of this solution may be found from equations (7). If it is desired to find them directly in terms of $x_{1}{ }^{0 p}, \ldots$ $x_{p}{ }^{0 p}$, then in the last $n-p$ equations (7), for a_{1}, \ldots, a_{p} we must substitute their values (9). The relations obtained in this manner will play the part of the equations mentioned in the formulation of the theorem.

Note. Generally speaking, it does not follow from what has been proved that the eigenvalue of the solution (4) is exactly equal to one of the numbers $\lambda_{1}, \ldots \lambda_{p}$.

The stated method offers the possibility of showing only that it is either equal to one of the numbers $\lambda_{1}, \ldots, \lambda_{p}$ or not smaller than $2 \lambda_{p}$, if

$$
\left.2 \lambda_{p} \leqslant \lambda_{j}, \quad \lambda_{j}=X \sum_{j=1}^{p} a_{j} x_{j s}\right\}
$$

If $2 \lambda_{p} \neq \lambda_{j}, j=1, \ldots, p-1$, the last case certainly does not occur when $\lambda_{1}, \ldots . \lambda_{p}$ are stable eigenvalues. In fact, by assuming the opposite and verifying that the solution $x_{i j}(t)$ vanishes, we may arrive at a contradiction to the theorem proved in [2].

BIBLIOGRAPHY

1. Liapunov, A.M., Obshchaya zadacha ob ustoichivosti dvizheniya (The General Problem of Stability of Motion). GTTI, 1951.
2. Pozharitskii, G.K., O kharakteristicheskom chisle ischezaiushehego resheniya uravnenii vozmushchennogo dvizheniya (on the eigenvalues of vanishing solutions of the equations of disturbed motion). PMM Vol. 19, No. 4, 1955.
